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Computer-Aided Testing of Mixers Between
90 and 350 GHz

MAREK T. FABER aND JOHN W. ARCHER, SENIOR MEMBER, IEEE

Abstract — Two computer-controlled measurement systems have been
constructed to allow testing of millimeter-wave Schottky-barrier diode
mixers in the frequency range from 90 to 350 GHz. A theoretical back-
ground to mixer measurement is presented and the design of the instru-
ments and associated computer software is described. In a companion
paper [1], a typical application of the measurement system to the testing
and evaluation of a practical W-band, cryogenic, fixed-tuned Schottky
diode mixer is used to demonstrate the performance and versatility of the
instruments.

I. INTRODUCTION

CCURATE TESTING OF microwave mixers has

been an important problem in mixer development for
more than 40 years. Advances in microwave receiver tech-
nology have resulted in high-sensitivity receivers becoming
practical at increasingly higher frequencies. The need for
low-noise mixers, especially in the field of millimeter-wave
radio astronomy, has stimulated a considerable amount of
research into the theory, design, and development of mixers
and mixer diodes. To achieve improved mixer designs
required more accurate measurement methods and more
complete testing and characterization of mixers. The lack
of coherent signal generators with a known output power
at millimeter-wave frequencies resulted in the adoption of
measurement methods [2] requiring the use of noise sources
only. These methods came into use in the late sixties and
were used for simultaneous measurements of gain and
noise of amplifiers at lower microwave frequencies. Utiliza-
tion of hot (at room temperature) and cold (at liquid
nitrogen temperature) matched RF loads as noise sources
allowed these methods to be utilized in millimeter-wave
mixer measurements [3] and resulted in a noise tempera-
ture meter which was used in fundamental work on cryo-
genic cooling of mixers [4]. Measurement setups that
evolved from this early design were then used successfully
in further development of millimeter-wave, low-noise
Schottky-diode mixers (e.g., [S]-{12]). Although coherent
signal generators were still sometimes used either for con-
version loss measurements [13] or as a “narrow-band noise
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source” [14], millimeter-wave mixer testing has usually
been carried out using the hot and cold load measurement
technique (in various forms, e.g., [15], [16]) because of its
inherent simplicity, accuracy, and speed.

In the late seventies, researchers began to use desktop
computers to process data and account for many sys-
tematic effects that were very time-consuming to correct
without the aid of a computer, and were often accepted as
measurement errors. ‘

The measurement systems reported in this paper employ
a computer not only for processing data but also for
controlling the operation of the test apparatus. This ap-
proach allows the user to carry out a much more extensive
set of mixer performance tests, as well as to obtain data
that could not be measured without the aid of high-speed,
real-time system control and data processing. The com-
puter-controlled instrument provides a more accurate, reli-
able, versatile, and efficient means of testing and develop-
ing millimeter-wave mixers than previously available.

The theoretical basis for the hot and cold load measure-
ment is briefly reviewed in Section II, where formulas
utilized in the data-processing software are given. The
hardware and software used in the measurement systems is
described in Sections III and IV, respectively. In a compan-
ion paper [1], computer printouts that resulted from the
testing of a sample mixer are used to illustrate the oper-
ation of the measurement system and to show the versatil-
ity of the test instrument and the variety of data that can
be obtained describing mixer performance.

II. MEASUREMENT FORMULAS

The gain and noise of a linear, two-port device can be
determined, for specified input and output frequencies and
terminating immittances, by measuring the values of out-
put noise that result from sequentially applying two differ-
ent known values of input noise [2]. At millimeter-wave
frequencies, well-matched RF loads made of absorber are
used as input noise sources. Usually one load has a physi-
cal temperature of about 295 K (room or “hot” load) while
the other (“cold” load) is cooled by immersion in liquid
nitrogen (77 K).

A system for simultaneous measurements of conversion
loss and mixer noise temperature (i.e., effective input noise
temperature) of a millimeter-wave, cryogenic mixer is shown
schematically in Fig. 1. The IF radiometer /reflectometer is
used to measure noise and reflections at the mixer output.
Well-matched standard hot and cold loads are used to
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Fig: 1. General measurement setup for simultaneous measurements of

the mixer noise temperature and conversion loss of a cryogenic mixer.

determine the available power gain G, and the effective
input noise temperature 7, of the radiometer at each mea-
surement frequency. The third calibration standard is a
short circuit, which is used to calibrate the reflectometer,
i.e., to determine noise temperatures Ty and TR =T+ TR
of noise waves which are sent outward from the reflectome-
ter when its noise source is turned off and on, respectively.
Such a noise measuring system, once calibrated (i.e., G,, T,,
Ty, and T§ are determined), can measure the absolute
noise temperature and the magnitude of reflection coeffi-
cient of a device connected to its input (port number 3 in
Fig. 1).

In practical measurements of cryogenicaily cooled mi-
crowave devices, neither the input port nor the output port
of a mixer is directly accessible and measurements have to
be made through lossy IF cables and RF components.

A. Effect of Loss in RF Components

RF and local oscillator signals are usually fed to the
mixer input through a quasi-optical or waveguide diplexing
system, a dewar vacuum window and, possibly, lossy wave-
guide components. In the most general case, the RF path
can be divided into two parts as shown in Fig. 1: one at
room temperature 7, outside the dewar (losses L; a; =
1/L,) and the other (losses L,; a,=1/L,) inside the

" dewar. The latter guiding structure might have one end at
physical temperature 7, and the other end at the dewar
cold plate temperature T,

Because of the loss in the RF path, the mixer sees noise
temperatures at its input which are different from the hot
and cold load temperatures T, and T.. This is because a
lossy RF component adds thermal noise power Pr= kT,
(1-1/L)Af, where T, is the equivalent temperature which
depends on the temperature distribution along the lossy
guide [17]. The simplest model assumes a linear distribu-
tion and T, is then the average of temperatures at device
input and output

Assuming that the matched hot RF load is at room
temperature, T =T, the noise temperatures seen by the
mixer at port 1 are

M

1
T,y= TH“‘E(l'w ) (Ty—Tp) <T,

Tie=Te+(Ty—To)(1 - oya,) -

X(Ty=Tp) =T,

1
E(l - 0‘2)
(2)
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and their difference is determined by T, — T~ and the total

RF losses
AT =Ty~ Ty = 0y, (Ty = T¢). (3)

Thus, the RF losses result in the room-temperature load
appearing to be colder and the cold load hotter than the
true temperatures when measured at the input of a cryo-
genically cooled mixer. This results in a reduction in the
input noise temperature difference by a factor of a,a,. It is
clear, therefore, that in order to preserve the accuracy of
mixer parameter measurements, it is essential to keep RF
input losses to a minimum, consistent with other con-
straints such as the thermal design of the cryostat.

B. Effect of Loss in IF Cable

The noise measured by the IF radiometer is composed of
the noise delivered from the mixer output into the IF cable,
the noise transmitted outward from the radiometer and
reflected back from the mixer IF terminals, and the ther-
mal noise generated in the lossy IF cable. It has been
shown [18] that the noise radiated from the two ends of the
lossy cable is uncorrelated, i.e.; in Fig. 1, the thermal noise
power incident on port 3 is not dependent on the phase of
the reflection coefficient T',.

At each measurement frequency, three noise tempera-
tures need to be measured.

1) Hot load (T,,) at mixer input; reflectometer noise
source off

T3HﬁaIF(1_|r2|2)T2H+a12F|r2|2TS+8T3' (4)

2) Hot load (Ty;) at mixer input; reflectometer noise
source on ‘

TR = o (1- |012) T + el DL P TR + 673 (5)

3) Cold load (T,.) at mixer input; reflectometer noise
source off ’

L= aIF(l - |r2‘2)Tzc + afp|T,|*Ts + 8T,

(6)
where 8T, = (1— agp)(1+ amp|15?)7, e @nd T, is the
equrvalent temperature of IF cable [17]. From these mea-
surements

T -

— ™
s
Because noise temperatures are defined in terms of avail-
able noise power [19], [20], it is necessary to derive an
“available conversion loss” L,, which corresponds to the
available power gain relating noise temperatures at the
output and input of a linear two-port [21], [22]. L, defined
as the ratio of available power of the RF source to avail-

able power at the mixer IF output, can be expressed as

2 2 _ 2
age|LL|" = ="

TS

1.DSB = AT,
AT,
TlH Trc “%F - ‘113|2 ) Ip—-T¢
T2H — 43¢ E Iy —Tse
_ aIF |T3| ATI : (8)
app AT3
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The mixer conversion loss L, (i.e., ratio of available power
of the RF source to power delivered to IF load) can be
derived from measured quantities as

DSB
DSB_, "4 AT,

©TI-mP T rar

(9)

The mixer noise temperature (i.e., effective input noise

temperature ') is given by
DSB _ DSB
Ty =T L — Ty

(10)

which can be expressed in terms of measured quantities as

(11)

AT,
TI\]/[)SB = (TBH— |F3|2Ts)"_ —Ty— 6Ty,

AT,
where
1 T,
8Ty, = (l*aIF) 1+a_IFlF3|2)Tceq'KYTa~ (12)
For a double sideband mixer [4], [23]
TB =T 1+ %) and L3 =LD%%|1+ %

(13)

which, for a broad-band mixer having equal conversion
losses from both sidebands, L, = L;, gives:

T =277 and L =2LD%5,

(14)

The above formulas show the corrections that need to be
applied at each measurement frequency in order to de-
termine mixer conversion loss and mixer noise temperature
from the measured quantities T, 755, and T, . They also
indicate sources of potential measurement inaccuracies in-
herent in the hot/cold load measurement technique em-
ploying a calibrated IF radiometer /reflectometer to make
noise measurements. The formulas derived also indicate
which parts of the test system need to be carefully designed
and how to optimize system software to minimize measure-
ment errors in various tests.

II1.

Two measurement systems have been constructed to
allow simultaneous testing of millimeter-wave mixers in
two different frequency ranges. One setup covers 90—190
GHz in two subranges, while the other is used at frequen-
cies from 200 to 290 GHz and also allows measurements
up to 350 GHz. Both setups employ the same cryogenic
systems, similar IF radiometers/reflectometers, and both
are controlled by Apple II+ desktop computers running
the same software. The major differences between the
systems lie in the design of the quasi-optical diplexers and
the local oscillator sources.

MEASUREMENT SYSTEMS

! The effective input noise temperature 1s the temperature to which the
source conductance of an identical, but noiseless, two-port must be heated
in order to provide an available noise power spectral density at the output
equal to that generated by the noisy two-port with source conductance at
absolute zero temperature.
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A simplified block diagram of the measurement setup is
shown in Fig. 2. The cryogenic system is a double dewar
arrangement devised for a multiple mixer radio astronomy
receiver [24]. The mixer under test and IF amplifier are
mounted in a cryogenic sub-dewar, comprising a separate
vacuum chamber and a cold stage which can be readily
thermally connected to or disconnected from the main
dewar cold plate by a mechanical heat switch. Such an
arrangement allows the sub-dewar to be warmed up without
turning off the refrigerator. Thus, the mixer can be changed
and then rapidly cooled again by closing the heat switch to
the cold main dewar plate.

A Teflon lens matches the diverging radiation pattern of
the mixer feed horn to the quasi-collimated beam within
the LO diplexer and serves as a RF vacuum window.
Polarizing-type diplexers [25] are used in both systems for
LO/RF combining and filtering. The higher RF frequency
diplexer is similar to one described previously [9]. The
other diplexer is an implementation of that design scaled
down in frequency. The polarizing grids used in the di-
plexers are free-standing 0.05-mm-diam BeCu grids with 75
wires per centimeter mounted on removable forms.

Four different sets of feed horns and lenses give a
far-field —11-dB full beam-width of 4.2° independent of
frequency in each of the four frequency subranges, namely
in 90-120 GHz, 130-190 GHz, 200-290 GHz, and 280-360
GHz. The feed horns have a flare angle of 4.57° and are
corrugated with the first 10 slots tapered in depth in order
to improve the horn SWR and reduce coupling to the EH,,
mode in the throat region [26], [27]. The circular waveguide
at the throat of the horn is coupled to a standard rectangu-
lar guide via a five-section, quarter-wave transformer.

The circularly symmetric lenses are made from Teflon.
The lens is designed on the basis of geometrical optics and
is constructed so that the surface towards the feed is plane.
The lens thickness, at a given radial distance from the
center, was derived from the parametric formulas given in
[28]. The lens surfaces are concentrically grooved in order
to reduce reflection losses at the air/dielectric interface.
The grooves have an easily machined triangular cross sec-
tion and are designed [29] to result in a power reflection
coefficient for the lens of less than 0.01 over the entire
frequency subrange. The total loss of the lens, including
the effects of dissipation in the dielectric and reflections at
the air /dielectric interface is less than 0.15 dB.

Both diplexers have been measured to evaluate their
performance and to obtain necessary calibration data. The
lower RF frequency diplexer has a total loss, including lens
reflection and feed coupling losses, of less than 0.4 dB
when operating with a 1.5-GHz IF. The total loss of the
higher frequency diplexer operating with the same IF is
between 0.4 and 0.6 dB at frequencies from 200 to 290
GHz and increases to ~ 0.8 dB at 350 GHz. The diplexers
provide more than 20-dB rejection of the local oscillator
noise sidebands.

The local oscillator sources used in measurement setups
are frequency-muitiplied klystrons. Four frequency multi-
pliers have been developed to cover the entire frequency
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Fig. 3. Simplified diagram of the computer-controlled 1-2-GHz radiometer /reflectometer. Oindicates signals coming to or from other components
of the measurement system (“A” represents the computer interface input and output system ADIOS).
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range from 90 to 350 GHz. Crossed-waveguide frequency
doublers provide an LO signal in the two lower frequency
subranges [30], [31]. In the frequency range from 200 to
290 GHz, an efficient frequency tripler [32] is used. The
LO source used in measurements at 310 to 350 GHz is a
6x multiplier chain composed of a quasi-optical tripler
[33] driven by high-output power frequency doublers [34].

RF loads made from Eccosorb AN72 formed into a
pyramidal shape for minimal error due to reflections from
the terminations are used as input noise sources. One load
is at room temperature, while the other is immersed in
liquid nitrogen enclosed in a styrofoam bucket. The di-
plexer RF input beam is switched between the two loads
by a rotating reflecting chopper wheel made from
aluminum.

DC bias from a computer controllable precision bias
supply is fed to the mixer under test through an IF
transformer and bias tee [9] which is integrated with the
mixer block. The IF output form the transformer is usually
connected to the radiometer /reflectometer through a
gold-plated, stainless steel, coaxial air line having 0.15 dB
of loss. A low-noise IF amplifier [35] can be inserted
between the transformer output and IF line if the perfor-
mance of the mixer in a receiver configuration is to be
tested. The amplifier is mounted on the sub-dewar cold
plate close to the mixer and when cooled to 20°K has input
noise temperature less than 10°K between 1.2 and 1.8 GHz
with a gain of 30 dB and an input VSWR of less than 1.4:1
over the same range.

Noise at the sub-dewar IF output is measured by a
stable, precisely calibrated, computer-controlled 1-2-GHz
radiometer /reflectometer mentioned in the preceding sec-
tion and shown schematically in Fig. 3. The remote unit is
placed close to the sub-dewar IF output in order to mini-
mize the length of the input cable. The radiometer/re-
flectometer has an effective input noise temperature of
about 300°K when the 60-MHz measurement bandwidth is
selected and is sufficiently stable for recalibration to be
required every three or four hours.

An output signal from an accurate square law detector
(detector error less than 0.5 percent at < —16-dBm IF
input level) incorporated in the radiometer is processed not
only by the computer but also by a noise monitoring
circuitry which provides readings proportional either to the
mixer noise temperature or the Y factor, or to the recipro-
cal of the mixer conversion loss. Such an arrangement
greatly simplifies the optimization of mixer tuning and bias
where only relative changes in mixer performance need to
be monitored.

An electrically controlled coaxial switch at the radiome-
ter input (Fig. 2) is used to select either the mixer (or
receiver) output or any of three calibration standards. The
short circuit and the well-matched loads which are accu-
rate, absolute standards of noise devised by Weinreb [36]
are connected to the switch through coaxial cables of
exactly the same length as the fourth (mixer) cable. The
radiometer /reflectometer may then be calibrated at the
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plane of the sub-dewar output connector including the IF
cable in the radiometer /reflectometer calibration.

The operation of each measurement setup is controlled
by an Apple I1+ desktop computer which is interfaced to
the setup through an input and output system (ADIOS)
[37] comprising digital interfaces and analog-to-digital and
digital-to-analog converters. User oriented “friendly” inter-
active software completes the test system.

IV. OPERATION OF THE MEASUREMENT SYSTEM

The performance of the computer-aided system can be
optimized not only by instruments employed in measure-
ments but also by careful design of the software which
controls system operation in various tests and which can
compensate hardware deficiencies.

A. Measurements During Cooling or Warming of a Mixer

Fast and accurate measurements and real-time data
processing are indispensable to successfully test the mixer
during cooling because measurements at a given temper-
ature have to be made within a period of time that is short
enough for little temperature change to occur. This can be
achieved only with the aid of a computer. It is also
necessary to limit the measurements to the most important
tests.

A simplified block diagram of the software controlling
the measurements during cooling or warming is shown in
Fig. 4. Before starting the measurements, the computer
assists the user in setting a test program for the cooldown
or warmup. If noise temperature is to be measured, the
computer checks the radiometer /reflectometer calibration
and returns to the main menu if recalibration is needed. A
measurement loop employed has been carefully optimized
to obtain high accuracy and to minimize the effect of
temperature change between the first and the last measure-
ment points. The measured data are stored on the disk for
further processing by the computer at a later time to
produce plots of the measured diode parameters at speci-
fied temperatures or as a function of temperature.

At each temperature, the system measures the I-V char-
acteristic of the mixer diode and the equivalent IF noise
temperature with dc bias only, 7,2, employing the formulas
given in Section II. The measurements are made at bias
currents in the range from 10 nA to 10 mA and at an IF
frequency preset by the test program to any value from 1
to 2 GHz. The results of measurements and real-time
calculations are plotted versus bias current on a CRT
monitor. When the measurements at a given temperature
are completed, the computer attempts to fit the data to a
model response of an ideal exponential diode with a series
resistor [38], [39] (e, Vp, =V, + IR =V, + R,
[exp(qV,/mkT)—1]) using the least-squares method. It
also computes residuals of the fit and derivatives

2 The measured quantity 7}, includes noise contributions from sources
other than just the diode, ie., from mount losses, and is quite distinct
from the noise temperature of the dc biased diode [4], [23].
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dVy(Ip)/dlog(Ip) and dV/(Ip)/dlog(Ip). These are
very useful in characterizing the quality of a Schottky-bar-
rier mixer diode and provide more insight into the diode
performance than the commonly used parameter AV =
V(100 pA)—V,(10 pA). Any deviation in the diode I-V
characteristic from the exponential response can easily be
traced because the latter derivative is independent of
log(I},) for the ideal diode. A correlation between the 7V
characteristic and an excess noise sometimes present in
cooled Schottky diodes can also be studied. Effects of a
whisker losing contact with the diode’s anode or punching
through the diode epilayer can be monitored as the temper-
ature is varied, thus providing indications for diode con-
tacting and mixer assembling.

B. Measurements at Constant Temperature

Different criteria may be applied in optimizing the oper-
ation of the measurement system if the temperature of the
mixer is constant or varies very slowly. The accuracy of

measurements is of primary importance while the speed is
no longer a limiting factor. Thus, more complexity and
versatility both in testing and data processing is permissi-
ble and more information may be printed out between
measurements. Therefore, the software used in mixer test-
ing at a constant temperature includes also IV character-
istics and T, measurements, but different measurement
loops are now employed. The equivalent IF noise tempera-
ture of the mixer with dc bias only T, may be measured
not only at a fixed IF frequency, but also with the IF swept
from 1 to 2 GHz in steps preset by the software. However,
only that section of the software that supervises tests
performed on the mixer with the LO signal applied is
shown in Fig. 5.

Mixer noise temperature and conversion loss may be
measured at a fixed IF frequency and also with IF center
frequency swept from 1 to 2 GHz in preprogrammed steps.
At a given frequency and level of the millimeter-wave
local-oscillator signal and for given dc mixer diode bias,
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the IF frequency is swept three times as indicated in Fig,. 5.
In the first and second sweeps, the RF hot load is in front
of the mixer input, while in the third sweep, the RF cold
load is seen by the mixer. The IF reflectometer noise
source is turned on during the second sweep only. The
mixer noise temperature and conversion loss are calculated
and plotted versus IF during the last sweep.

The results of the measurements may be further processed
with the aid of the computer, which provides an easy and
convenient means for optimizing, characterizing, and docu-
menting the RF performance of the mixer.

V. SUMMARY

The theory for accurate measurements of millimeter-wave
mixers has been presented. The corrections that need to be
applied in order to determine mixer parameters from mea-
sured quantities have been derived and sources of potential
measurement inaccuracies inherent in the hot/cold load
measurement technique have been indicated.

Two computerized measurement systems operating on
the basis of this theory have been constructed to allow
testing of millimeter-wave mixers in the frequency range
from 90 to 350 GHz. The design criteria and descriptions
of both the hardware and the software have been given.
The measurement systems have been extensively used in
testing of millimeter-wave mixers, e.g., [26], [40], and have
been an essential and invaluable asset in mixer develop-
ment.

A W-band, fixed-tuned, cryogenic mixer has been
selected to illustrate in the companion paper [1] the oper-
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Simplified block diagram of the software controlling the measurements and data processing at constant temperature.

ation of the measurement system and to show the versatil-
ity and thoroughness of the available tests, which in many
cases would not be feasible without the aid of a computer.
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